Correlative Multimodal Imaging of Brain Tissue


October 25, 2023
Events Multimodal Imaging Neuroscience Nodes Swedish NMI Node

Our next Special Edition Virtual Pub, “Multiscale Imaging in the Neurosciences,” organized in collaboration with EBRAINS, will take place on Friday, October 27. At this event, we will explore the potential areas of collaboration between EBRAINS and Euro-BioImaging and highlight the expertise of selected Euro-BioImaging Nodes in the Neuroscience domain. 

When: October 27, 2023, from 13:00-15:00 CEST

Where: Online

Full program

Register

Abstract

Correlative Multimodal Imaging of Brain Tissue

Julia Fernandez-Rodrigues, Swedish NMI

The future of bioimaging is in the synergy between modalities, in the hard-to-navigate waters of the interdisciplinary divide. Imaging communities are attempting to broaden their existing single-cell technologies to tackle the complex spatial systems biology of 3D models or entire organs, and pathological tissues such as tumors. Given the age-old trade-off between sample size and resolution, and between imaging structure and function, these challenges will only be met by designing new and more automated Correlative Multimodal Imaging (CMI) workflows that daisy-chain microscopes together to capture images of nanoscale biological processes across scales within a single organism. The CMI approach aims at gathering information from a specimen with multiple imaging modalities that – when combined – create a highly informative, composite view of the specimen. It is a holistic approach that spans a large spatial resolution range from mm to nm, and provides complementary information about the structure, function, dynamics, and the molecular composition of the sample. CMI is of strategic importance to a large and wide group of national and international life scientists, supporting many research activities, such as, to characterise synaptic changes and pathological protein aggregation underlying neurological diseases. In this context we have created a European consortium, Big mUltimodal hIgh-resolution atLas Data Management, BUILD, to design a proof-of-concept approach to study and understand the brain’s nerve fiber architecture and the resulting structural connectivity (e.g., to address diseases that affect myelination, such as MS). In the study the same sample was shipped to the different expert facilities all over Europe: first prepared and visualized a mouse brain section with polarized microscopy. The same section was sent to a second facility where is prepared for scanning electron microscopy and X-ray tomography. We defined the volume of interest with X-ray, creating a reference 3D image dataset. After a successful evaluation the images were correlated with different scanning electron microscope systems to image the volume at high resolution for advanced analysis (SEM single and multi-beam and FIB SEM). Finally, datasets were transferred to Gothenburg for image processing and analysis. Thus, the combined usage of these interdisciplinary approach will finally enable the generation of unique brain atlases of different species, such non-human and human primates.


More news from Euro-BioImaging

July 25, 2024

Euro-BioImaging presents alongside European Research Infrastructures at FEBS Congress 2024

The 48th FEBS Congress (‘FEBS 2024’), titled ‘Mining Biochemistry for Human Health and Well-Being’, took place in Milan from June 29 to July 3,…

Euro-BioImaging's Head of Image Data Services, Aastha Mathur, with the team at the Hospital La Fe, part of our Population Imaging Node Valencia.

July 23, 2024

Visiting the Euro-BioImaging Spanish Nodes

With summer came the season of conferences and workshops, taking the Euro-BioImaging Hub team across Europe. Head of Image Data Services, Aastha Mathur, took…

July 12, 2024

Latest developments in cryo-EM and a goodbye to iNEXT-Discovery

The final consortium meeting of the iNEXT-Discovery project took place in Brno in June 2024, alongside the Symposium on Recent Advances in Cryo-EM. This…