miEye: bench-top cost-effective open-source single-molecule localization microscopy hardware and software platform


Published July 25, 2023

Imaging technologies are becoming increasingly complex and ever more expensive, reducing the general accessibility and potential reach of cutting-edge techniques. The Special Edition Virtual Pub “Open Hardware in Imaging,” in collaboration with the Euro-BioImaging Industry Board, will highlight developments from scientists and companies who are committed to making biological & biomedical imaging hardware and software solutions openly available to a wide audience.

When: September 22, 2023, from 13:00-15:00 CEST

Where: Online

At this event, Marijonas Tutkus, Vilnius University, will present miEye: bench-top cost-effective open-source single-molecule localization microscopy hardware and software platform - (full abstract below). Hear this talk and others like it on September 22!

Full program
Register

ABSTRACT 

miEye: bench-top cost-effective open-source single-molecule localization microscopy hardware and software platform

Marijonas Tutkus
Vilnius University

Our miEye Bench-top super-resolution microscope system [doi:10.1016/j.ohx.2022.e00368] provides exceptional performance using affordable equipment. We achieved a lateral sample drift of approximately 10 nm over 5 minutes, while our autofocusing system effectively controlled Z drift. Additionally, we achieved a ground-truth resolution of approximately <15 nm using DNA PAINT in vitro and <30 nm using dSTORM in fixated cells. The miEye system is an open-microscopy project, and we have made all information, including parts list, assembly guide, and software code (microEye: https://github.com/samhitech/microEye for microscope control, data acquisition, and analysis/visualization), available as open-source [doi:10.17605/OSF.IO/J2FQY].

In this presentation, I will present the latest updates to our microscope's hardware and software, which includes the installation of a dual-view emission path and 3D localization using astigmatism. We have also conducted extensive testing of various industrial-grade CMOS cameras compared to our reference sCMOS cameras. I will showcase our system's capabilities through demonstration experiments, such as reliable tracking of HaloJF647-tagged Kinesin molecules in living eukaryotic cells on GFP-tagged microtubules, highlighting the applicability and limitations of our system. This presentation will cover advancements in our super-resolution localisation microscopy system and its use in exploring biological systems.


More news from Euro-BioImaging

PCI Node upgrade

January 9, 2026

Phase Contrast Imaging Flagship Node Trieste will benefit from Elettra 2.0 upgrade 

The Elettra Sincrotrone Trieste – the beamline of Euro-BioImaging’s Phase Contrast Imaging Flagship Node – is undergoing a massive upgrade that will significantly enhance…

foundingGIDE 2 years

January 8, 2026

A Two-Year Report on foundingGIDE's progress in Image Data Standardization

The advancement of scientific discovery is increasingly dependent upon the capacity to manage and integrate vast, complex datasets. In life sciences, biological and preclinical…

January 7, 2026

Innovating for a Greener Future: ZEISS Shares Sustainability Strategies with the Bioimaging Community

As part of the Horizon Europe EVOLVE project (GA# 101130986) and the Euro-BioImaging Expert Group on Remote Access…