miEye: bench-top cost-effective open-source single-molecule localization microscopy hardware and software platform


Published July 25, 2023

Imaging technologies are becoming increasingly complex and ever more expensive, reducing the general accessibility and potential reach of cutting-edge techniques. The Special Edition Virtual Pub “Open Hardware in Imaging,” in collaboration with the Euro-BioImaging Industry Board, will highlight developments from scientists and companies who are committed to making biological & biomedical imaging hardware and software solutions openly available to a wide audience.

When: September 22, 2023, from 13:00-15:00 CEST

Where: Online

At this event, Marijonas Tutkus, Vilnius University, will present miEye: bench-top cost-effective open-source single-molecule localization microscopy hardware and software platform - (full abstract below). Hear this talk and others like it on September 22!

Full program
Register

ABSTRACT 

miEye: bench-top cost-effective open-source single-molecule localization microscopy hardware and software platform

Marijonas Tutkus
Vilnius University

Our miEye Bench-top super-resolution microscope system [doi:10.1016/j.ohx.2022.e00368] provides exceptional performance using affordable equipment. We achieved a lateral sample drift of approximately 10 nm over 5 minutes, while our autofocusing system effectively controlled Z drift. Additionally, we achieved a ground-truth resolution of approximately <15 nm using DNA PAINT in vitro and <30 nm using dSTORM in fixated cells. The miEye system is an open-microscopy project, and we have made all information, including parts list, assembly guide, and software code (microEye: https://github.com/samhitech/microEye for microscope control, data acquisition, and analysis/visualization), available as open-source [doi:10.17605/OSF.IO/J2FQY].

In this presentation, I will present the latest updates to our microscope's hardware and software, which includes the installation of a dual-view emission path and 3D localization using astigmatism. We have also conducted extensive testing of various industrial-grade CMOS cameras compared to our reference sCMOS cameras. I will showcase our system's capabilities through demonstration experiments, such as reliable tracking of HaloJF647-tagged Kinesin molecules in living eukaryotic cells on GFP-tagged microtubules, highlighting the applicability and limitations of our system. This presentation will cover advancements in our super-resolution localisation microscopy system and its use in exploring biological systems.


More news from Euro-BioImaging

Figure 2 from https://doi.org/10.1038/s41556-025-01637-6

April 29, 2025

Innovation for Tracking chromosome dynamics

Cell division is the fundamental process in living organisms – the basis for growth and survival of both single- and multicellular systems. As part…

Seeds in the PET/CT scanner at DIMP NEUROMED Node.

April 28, 2025

Beyond the husk – shining light on seed quality through molecular imaging

Seed quality is absolutely key to the success of both agronomically relevant crops and forest tree species used for restoration strategies. Forest restoration activities,…

10 Year Anniversary Celebration - CZ BioImaging

April 25, 2025

Czech-BioImaging celebrates its 10 year anniversary!

In 2025, Czech-BioImaging celebrates its 10th anniversary. Czech-BioImaging is the national infrastructure that brings together 16 leading imaging centers across the Czech Republic,…